If it's not what You are looking for type in the equation solver your own equation and let us solve it.
z^2-60=40
We move all terms to the left:
z^2-60-(40)=0
We add all the numbers together, and all the variables
z^2-100=0
a = 1; b = 0; c = -100;
Δ = b2-4ac
Δ = 02-4·1·(-100)
Δ = 400
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{400}=20$$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-20}{2*1}=\frac{-20}{2} =-10 $$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+20}{2*1}=\frac{20}{2} =10 $
| x-10-x=-2x+6* | | (1⁄4)/5=8/x | | 9(3x +4)–10x=189 | | 3(2n+4)+n=40 | | 14+6a—8=18 | | 7x-30=8x | | 10=w+14 | | 11y-33=180 | | -3a^2+5a^2=72 | | 5(x-3)=x=1 | | 7-5x=40+3 | | 7(-x+6)=35 | | x16+12x=4x+24 | | -3x1=-5 | | 11y-32=1 | | -4+7p=6p | | 13²+26-52=x | | 3=-5-x | | 2(x-5)+10=0 | | 5.00+0.65x=10.00+.45x | | 15+10p=6p+27 | | 180=35+2x | | 23(14x)-5=180 | | 11y-32+1=180 | | 2x-6+7x+4=90° | | z2−60=40 | | 15-7u=95+3u | | 7.00*1.50n=11.50 | | 93=10x+25 | | -8(2x1)=36 | | 9(3x + 4) – 10x = 189 | | -4x-6x+17=-3 |